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VMAD framework
Introduction

What is VMAD ?

Loop instrumentation + Runtime optimization + Polytope model

Predecessor of the APOLLO framework.
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VMAD framework
Framework overview
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VMAD framework
Example

example(float ∗ ∗A,float ∗ ∗B){
for(i = 1; i ≤ N; + + i)

for(j = 1; j ≤ N; + + j)

A[i ][j ] = B[i − 1][j ] + B[i ][j − 1]

}

Can be invoked as example(M1,M2) or example(M1,M1).
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VMAD framework
Chunking

Loop execution by chunks.
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VMAD framework
Chunking

Loop execution by chunks.
A chunk is a set of contiguous iterations of the outermost loop.
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VMAD framework
Chunking

Loop execution by chunks.
Collect information by instrumenting some iterations.
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VMAD framework
Chunking

Loop execution by chunks.
Keep the original behavior.
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VMAD framework
Chunking

Loop execution by chunks.
Apply polyhedral optimizations.
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VMAD framework
Chunking

Loop execution by chunks.
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VMAD framework
Chunking

Loop execution by chunks.
Adapt the execution depending on the loop behavior.
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VMAD framework
Instrumentation

Predict the behavior from a few instrumented iterations.
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VMAD framework
Instrumentation

Predict the behavior from a few instrumented iterations.
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VMAD framework
Verification

Predictions may go wrong.
We must detect mispredictions.

pred = a1 ∗ i + a2 ∗ j + a3
if &A[i][j] 6= pred then SignalMissprediction()

store float val, float* &A[i][j]

Inserted to verify predicted scalars, memory accesses and loop bounds.
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VMAD framework
Code generation

How can we adjust the loop to execute efficiently at different stages ?

We generate several specialized versions from the original nest.

One with instrumentation code embedded.
One matching the original nest behavior.
Several code skeletons.

December 6, 2013 16 / 40



VMAD framework
Code generation

How can we adjust the loop to execute efficiently at different stages ?

We generate several specialized versions from the original nest.

One with instrumentation code embedded.
One matching the original nest behavior.
Several code skeletons.

December 6, 2013 16 / 40



VMAD framework
Code generation

How can we adjust the loop to execute efficiently at different stages ?

We generate several specialized versions from the original nest.

One with instrumentation code embedded.

One matching the original nest behavior.
Several code skeletons.

December 6, 2013 16 / 40



VMAD framework
Code generation

How can we adjust the loop to execute efficiently at different stages ?

We generate several specialized versions from the original nest.

One with instrumentation code embedded.
One matching the original nest behavior.

Several code skeletons.

December 6, 2013 16 / 40



VMAD framework
Code generation

How can we adjust the loop to execute efficiently at different stages ?

We generate several specialized versions from the original nest.

One with instrumentation code embedded.
One matching the original nest behavior.
Several code skeletons.

December 6, 2013 16 / 40



VMAD framework
Code generation

A code skeleton is a parametrized nest to match a kind of
transformations.

for(x = Lowerx(); x < Upperx(); + + x){
forall(y = Lowery (x); y < Uppery (x); + + y){(

i
j

)
= T−1

(
x
y

)
. . . //Body

}
}
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VMAD framework
Code generation

A code skeleton is a parametrized nest to match a kind of
transformations.

for(x = chunk no + 1; x ≤ chunk no + opt chunk size + N − 1; + + x){
forall(y = 1; y < min(x ,N); + + y){(

i
j

)
=

(
1 −1
1 0

)(
x
y

)
. . . //Body

}
}
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VMAD framework
Problems

Consequences of this approach:

The prediction verification imposes an overhead.

The number of transformations is limited by the available skeletons.
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Contribution 1



Contribution 1
Tiling transformation

New code skeleton enabling the tiling transformation.
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New code skeleton enabling the tiling transformation.
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Contribution 1
Tiling transformation

Alters the nest structure, it needs 2× the number of loops.

Extension of the dependence analysis and transformation selection.

Development of a mechanism for adjusting the tile sizes.
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Contribution 1
Tiling transformation

Tile size adjustment algorithm:

Before executing the first chunk, assign random values for the tile
sizes.
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Tiling transformation

Tile size adjustment algorithm:

Before executing the first chunk, assign random values for the tile
sizes.
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Contribution 1
Tiling transformation

Tile size adjustment algorithm:

Launch the chunk and collect information about the execution.

Execution time and number of tiles executed.

After the chunk execution finishes:

Obtain a score for each tile size configuration and choose the winner.
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Contribution 1
Tiling transformation

Tile size adjustment algorithm:

Between the execution of chunks:

Choose the best configuration based on the score, replicate it on each
thread.
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Contribution 1
Tiling transformation

Tile size adjustment algorithm:

Between the execution of chunks:

Slightly adjust the tile size configurations.
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Contribution 1
Tiling transformation

Tile size adjustment for one loop execution.
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Contribution 1
Tiling transformation

Improves data locality.

Reduced amount of verification code.
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Contribution 2



Contribution 2
Speculative induction variable recognition

Verification code checks if the memory accesses satisfy the predicted
linear functions.

pred = a1 ∗ i + a2 ∗ j + a3
if &A[i][j] 6= pred then SignalMissprediction()

store float val, float* &A[i][j]

This verification introduces time overhead.
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Contribution 2
Speculative induction variable recognition

Can we avoid some of this verification code ?

for(. . . ){
∗ (ptr) = . . .

∗ (ptr + 1) = . . .

∗ (ptr + 2) = . . .

∗ (ptr + 3) = . . .

}
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Contribution 2
Speculative induction variable recognition

Can we avoid some of this verification code ?

We introduced an analysis to identify memory accesses which don’t need
verification.

Avoid verification if a memory address is a linear transformation
from a linear value (predicted scalar or another memory address).

Catches common cases such as loop unrolls and several accesses to a
structure.

December 6, 2013 36 / 40



Conclusions



Conclusions

VMAD purposed a promising approach to automatic loop parallelization.
In this talk I presented a new extension to this framework:

A new code skeleton, enabling the tiling transformation, that
improves data locality and has reduced verification code.

An analysis to identify memory accesses where verification code is not
necessary.
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Perspectives

APOLLO is an evolution of this framework.
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