
Tiling in the VMAD framework

Author
Martinez Caamaño, Juan Manuel
jmartinezcaamao@gmail.com

INRIA - Camus team
Université de Strasbourg



VMAD framework
Introduction

What is VMAD ?

Loop instrumentation + Runtime optimization + Polytope model

Predecessor of the APOLLO framework.

December 6, 2013 2 / 40



VMAD framework
Introduction

What is VMAD ?

Loop instrumentation + Runtime optimization + Polytope model

Predecessor of the APOLLO framework.

December 6, 2013 2 / 40



VMAD framework
Framework overview

December 6, 2013 3 / 40



VMAD framework
Example

example(float ∗ ∗A,float ∗ ∗B){
for(i = 1; i ≤ N; + + i)

for(j = 1; j ≤ N; + + j)

A[i ][j ] = B[i − 1][j ] + B[i ][j − 1]

}

Can be invoked as example(M1,M2) or example(M1,M1).

December 6, 2013 4 / 40



VMAD framework
Chunking

Loop execution by chunks.

December 6, 2013 5 / 40



VMAD framework
Chunking

Loop execution by chunks.
A chunk is a set of contiguous iterations of the outermost loop.

December 6, 2013 6 / 40



VMAD framework
Chunking

Loop execution by chunks.
Collect information by instrumenting some iterations.

December 6, 2013 7 / 40



VMAD framework
Chunking

Loop execution by chunks.
Keep the original behavior.

December 6, 2013 8 / 40



VMAD framework
Chunking

Loop execution by chunks.
Apply polyhedral optimizations.

December 6, 2013 9 / 40



VMAD framework
Chunking

Loop execution by chunks.

December 6, 2013 10 / 40



VMAD framework
Chunking

Loop execution by chunks.

December 6, 2013 11 / 40



VMAD framework
Chunking

Loop execution by chunks.
Adapt the execution depending on the loop behavior.

December 6, 2013 12 / 40



VMAD framework
Instrumentation

Predict the behavior from a few instrumented iterations.

December 6, 2013 13 / 40



VMAD framework
Instrumentation

Predict the behavior from a few instrumented iterations.

December 6, 2013 14 / 40



VMAD framework
Verification

Predictions may go wrong.
We must detect mispredictions.

pred = a1 ∗ i + a2 ∗ j + a3
if &A[i][j] 6= pred then SignalMissprediction()

store float val, float* &A[i][j]

Inserted to verify predicted scalars, memory accesses and loop bounds.

December 6, 2013 15 / 40



VMAD framework
Verification

Predictions may go wrong.
We must detect mispredictions.

pred = a1 ∗ i + a2 ∗ j + a3
if &A[i][j] 6= pred then SignalMissprediction()

store float val, float* &A[i][j]

Inserted to verify predicted scalars, memory accesses and loop bounds.

December 6, 2013 15 / 40



VMAD framework
Code generation

How can we adjust the loop to execute efficiently at different stages ?

We generate several specialized versions from the original nest.

One with instrumentation code embedded.
One matching the original nest behavior.
Several code skeletons.

December 6, 2013 16 / 40



VMAD framework
Code generation

How can we adjust the loop to execute efficiently at different stages ?

We generate several specialized versions from the original nest.

One with instrumentation code embedded.
One matching the original nest behavior.
Several code skeletons.

December 6, 2013 16 / 40



VMAD framework
Code generation

How can we adjust the loop to execute efficiently at different stages ?

We generate several specialized versions from the original nest.

One with instrumentation code embedded.

One matching the original nest behavior.
Several code skeletons.

December 6, 2013 16 / 40



VMAD framework
Code generation

How can we adjust the loop to execute efficiently at different stages ?

We generate several specialized versions from the original nest.

One with instrumentation code embedded.
One matching the original nest behavior.

Several code skeletons.

December 6, 2013 16 / 40



VMAD framework
Code generation

How can we adjust the loop to execute efficiently at different stages ?

We generate several specialized versions from the original nest.

One with instrumentation code embedded.
One matching the original nest behavior.
Several code skeletons.

December 6, 2013 16 / 40



VMAD framework
Code generation

A code skeleton is a parametrized nest to match a kind of
transformations.

for(x = Lowerx(); x < Upperx(); + + x){
forall(y = Lowery (x); y < Uppery (x); + + y){(

i
j

)
= T−1

(
x
y

)
. . . //Body

}
}

December 6, 2013 17 / 40



VMAD framework
Code generation

A code skeleton is a parametrized nest to match a kind of
transformations.

for(x = chunk no + 1; x ≤ chunk no + opt chunk size + N − 1; + + x){
forall(y = 1; y < min(x ,N); + + y){(

i
j

)
=

(
1 −1
1 0

)(
x
y

)
. . . //Body

}
}

December 6, 2013 18 / 40



VMAD framework
Problems

Consequences of this approach:

The prediction verification imposes an overhead.

The number of transformations is limited by the available skeletons.

December 6, 2013 19 / 40



Contributions



Contribution 1



Contribution 1
Tiling transformation

New code skeleton enabling the tiling transformation.

December 6, 2013 22 / 40



Contribution 1
Tiling transformation

New code skeleton enabling the tiling transformation.

December 6, 2013 23 / 40



Contribution 1
Tiling transformation

Alters the nest structure, it needs 2× the number of loops.

Extension of the dependence analysis and transformation selection.

Development of a mechanism for adjusting the tile sizes.

December 6, 2013 24 / 40



Contribution 1
Tiling transformation

Tile size adjustment algorithm:

Before executing the first chunk, assign random values for the tile
sizes.

December 6, 2013 25 / 40



Contribution 1
Tiling transformation

Tile size adjustment algorithm:

Before executing the first chunk, assign random values for the tile
sizes.

December 6, 2013 26 / 40



Contribution 1
Tiling transformation

Tile size adjustment algorithm:

Launch the chunk and collect information about the execution.

Execution time and number of tiles executed.

After the chunk execution finishes:

Obtain a score for each tile size configuration and choose the winner.

December 6, 2013 27 / 40



Contribution 1
Tiling transformation

Tile size adjustment algorithm:

Launch the chunk and collect information about the execution.

Execution time and number of tiles executed.

After the chunk execution finishes:

Obtain a score for each tile size configuration and choose the winner.

December 6, 2013 28 / 40



Contribution 1
Tiling transformation

Tile size adjustment algorithm:

Between the execution of chunks:

Choose the best configuration based on the score, replicate it on each
thread.

December 6, 2013 29 / 40



Contribution 1
Tiling transformation

Tile size adjustment algorithm:

Between the execution of chunks:

Slightly adjust the tile size configurations.

December 6, 2013 30 / 40



Contribution 1
Tiling transformation

Tile size adjustment for one loop execution.

36

38

40

42

44

46

48

1 2 3

S
co

re
(L

e
ss

 i
s 

b
e
tt

e
r)

number of executed chunks

Matrixmul tile size adjustment

Best score
Average score

52

54

56

58

60

62

64

66

68

1 2 3 4 5
S
co

re
(L

e
ss

 i
s 

b
e
tt

e
r)

number of executed chunks

Adi tile size adjustment

Best score
Average score

December 6, 2013 31 / 40



Contribution 1
Tiling transformation

Improves data locality.

Reduced amount of verification code.

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

1 2 4 8 16 24

Ti
m

e
(i

n
 m

ili
se

co
n

d
s)

Number of threads

Grayscale performance

Original
Parallel

Tiling

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

1 2 4 8 16 24

Ti
m

e
(i

n
 m

ili
se

co
n

d
s)

Number of threads

Matrixumul performance

Original
Parallel

Tiling

December 6, 2013 32 / 40



Contribution 2



Contribution 2
Speculative induction variable recognition

Verification code checks if the memory accesses satisfy the predicted
linear functions.

pred = a1 ∗ i + a2 ∗ j + a3
if &A[i][j] 6= pred then SignalMissprediction()

store float val, float* &A[i][j]

This verification introduces time overhead.

December 6, 2013 34 / 40



Contribution 2
Speculative induction variable recognition

Can we avoid some of this verification code ?

for(. . . ){
∗ (ptr) = . . .

∗ (ptr + 1) = . . .

∗ (ptr + 2) = . . .

∗ (ptr + 3) = . . .

}

December 6, 2013 35 / 40



Contribution 2
Speculative induction variable recognition

Can we avoid some of this verification code ?

We introduced an analysis to identify memory accesses which don’t need
verification.

Avoid verification if a memory address is a linear transformation
from a linear value (predicted scalar or another memory address).

Catches common cases such as loop unrolls and several accesses to a
structure.

December 6, 2013 36 / 40



Conclusions



Conclusions

VMAD purposed a promising approach to automatic loop parallelization.
In this talk I presented a new extension to this framework:

A new code skeleton, enabling the tiling transformation, that
improves data locality and has reduced verification code.

An analysis to identify memory accesses where verification code is not
necessary.

December 6, 2013 38 / 40



Perspectives

APOLLO is an evolution of this framework.

December 6, 2013 39 / 40



¿?


